skip to main content


Search for: All records

Creators/Authors contains: "Fei, Chenyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Matic, Ivan (Ed.)

    Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of theVibrioQS receptor-transcription factor, called VqmA, that monitors theVibrioQS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage geneqtip. Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host genevqmR. VqmR is a small RNA that controls downstream QS target genes. Here, we sequenceVibrio parahaemolyticusstrain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encodingvqmRandvqmAharbors a deletion encompassingvqmRand a portion of thevqmApromoter, inactivating that QS system. We discover thatV.parahaemolyticusstrain O3:K6 882 is also defective in its other QS systems, due to a mutation inluxO, encoding the central QS transcriptional regulator LuxO. Both thevqmR-vqmAandluxOmutations lockV.parahaemolyticusstrain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects inV.parahaemolyticusstrain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competentV.parahaemolyticusstrain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, inV.parahaemolyticusstrain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis.

     
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  2. Abstract In mammals, subcellular protein localization of factors like planar cell polarity proteins is a key driver of the multicellular organization of tissues. Bacteria also form organized multicellular communities, but these patterns are largely thought to emerge from regulation of whole-cell processes like growth, motility, cell shape, and differentiation. Here we show that a unique intracellular patterning of appendages known as type IV pili (T4P) can drive multicellular development of complex bacterial communities. Specifically, dynamic T4P appendages localize in a line along the long axis of the cell in the bacterium Acinetobacter baylyi . This long-axis localization is regulated by a functionally divergent chemosensory Pil-Chp system, and an atypical T4P protein homologue (FimV) bridges Pil-Chp signaling and T4P positioning. We further demonstrate through modeling and empirical approaches that subcellular T4P localization controls how individual cells interact with one another, independently of T4P dynamics, with different patterns of localization giving rise to distinct multicellular architectures. Our results reveal how subcellular patterning of single cells regulates the development of multicellular bacterial communities. 
    more » « less
  3. Abstract Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities. 
    more » « less
  4. Storz, Gisela (Ed.)
    ABSTRACT Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the TetR family transcriptional regulator LuxT was shown to control Vibrio harveyi qrr 1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA sequencing to reveal that, beyond the control of qrr 1, LuxT is a global regulator of 414 V. harveyi genes, including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses swrZ , encoding a GntR family transcriptional regulator, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ dependent and one that is SwrZ independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low-cell-density behaviors. Phylogenetic analyses reveal that luxT is highly conserved among Vibrionaceae , but swrZ is less well conserved. In a test case, we find that in Aliivibrio fischeri , LuxT also represses swrZ . SwrZ is a repressor of A. fischeri siderophore production genes. Thus, LuxT repression of swrZ drives the activation of A. fischeri siderophore gene expression. Our results indicate that LuxT is a major regulator among Vibrionaceae , and in the species that also possess swrZ , LuxT functions with SwrZ to control gene expression. IMPORTANCE Bacteria precisely tune gene expression patterns to successfully react to changes that occur in the environment. Defining the mechanisms that enable bacteria to thrive in diverse and fluctuating habitats, including in host organisms, is crucial for a deep understanding of the microbial world and also for the development of effective applications to promote or combat particular bacteria. In this study, we show that a regulator called LuxT controls over 400 genes in the marine bacterium Vibrio harveyi and that LuxT is highly conserved among Vibrionaceae species, ubiquitous marine bacteria that often cause disease. We characterize the mechanisms by which LuxT controls genes involved in virulence and nutrient acquisition. We show that LuxT functions in parallel with a set of regulators of the bacterial cell-to-cell communication process called quorum sensing to promote V. harveyi behaviors at low cell density. 
    more » « less
  5. Waldor, Matthew K. (Ed.)
    Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae . Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors. We show that NspS-MbaA signals locally to specific effectors, sensitizing V . cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input–output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies. 
    more » « less
  6. Abstract

    Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green algaChlamydomonas reinhardtii. Our model recapitulates allChlamydomonasPCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2leakage, as well as proper enzyme localization to reduce futile cycling between CO2and HCO3. Importantly, our model demonstrates the feasibility of a purely passive CO2uptake strategy at air-level CO2, while active HCO3uptake proves advantageous at lower CO2levels. We propose a four-step engineering path to increase the rate of CO2fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.

     
    more » « less
  7. Bacterial cells can self-organize into structured communities at fluid–fluid interfaces. These soft, living materials composed of cells and extracellular matrix are called pellicles. Cells residing in pellicles garner group-level survival advantages such as increased antibiotic resistance. The dynamics of pellicle formation and, more generally, how complex morphologies arise from active biomaterials confined at interfaces are not well understood. Here, using Vibrio cholerae as our model organism, a custom-built adaptive stereo microscope, fluorescence imaging, mechanical theory, and simulations, we report a fractal wrinkling morphogenesis program that differs radically from the well-known coalescence of wrinkles into folds that occurs in passive thin films at fluid–fluid interfaces. Four stages occur: growth of founding colonies, onset of primary wrinkles, development of secondary curved ridge instabilities, and finally the emergence of a cascade of finer structures with fractal-like scaling in wavelength. The time evolution of pellicle formation depends on the initial heterogeneity of the film microstructure. Changing the starting bacterial seeding density produces three variations in the sequence of morphogenic stages, which we term the bypass, crystalline, and incomplete modes. Despite these global architectural transitions, individual microcolonies remain spatially segregated, and thus, the community maintains spatial and genetic heterogeneity. Our results suggest that the memory of the original microstructure is critical in setting the morphogenic dynamics of a pellicle as an active biomaterial. 
    more » « less
  8. Type IV pili (TFP) function through cycles of extension and retraction. The coordination of these cycles remains mysterious due to a lack of quantitative measurements of multiple features of TFP dynamics. Here, we fluorescently label TFP in the pathogenPseudomonas aeruginosaand track full extension and retraction cycles of individual filaments. Polymerization and depolymerization dynamics are stochastic; TFP are made at random times and extend, pause, and retract for random lengths of time. TFP can also pause for extended periods between two extension or two retraction events in both wild-type cells and a slowly retracting PilT mutant. We developed a biophysical model based on the stochastic binding of two dedicated extension and retraction motors to the same pilus machine that predicts the observed features of the data with no free parameters. We show that only a model in which both motors stochastically bind and unbind to the pilus machine independent of the piliation state of the machine quantitatively explains the experimentally observed pilus production rate. In experimental support of this model, we show that the abundance of the retraction motor dictates the pilus production rate and that PilT is bound to pilus machines even in their unpiliated state. Together, the strong quantitative agreement of our model with a variety of experiments suggests that the entire repetitive cycle of pilus extension and retraction is coordinated by the competition of stochastic motor binding to the pilus machine, and that the retraction motor is the major throttle for pilus production.

     
    more » « less
  9. During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developingVibrio choleraebiofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments—the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction). Our results, which establish that nonuniform growth and friction are fundamental determinants of stress anisotropy and hence biofilm morphology, are broadly applicable to bacterial biofilms with similar morphologies and also provide insight into how other bacterial biofilms form distinct wrinkle patterns. We discuss the implications of forming undulated biofilm morphologies, which may enhance the availability of nutrients and signaling molecules and serve as a “bet hedging” strategy.

     
    more » « less
  10. Engineers have long studied how mechanical instabilities cause patterns to form in inanimate materials, and recently more attention has been given to how such forces affect biological systems. For example, stresses can build up within a tissue if one layer grows faster than an adjacent layer. The tissue can release this stress by wrinkling, folding or creasing. Though ancient and single-celled, bacteria can also develop spectacular patterns when they exist in the lifestyle known as a biofilm: a community of cells adhered to a surface. But do mechanical instabilities drive the patterns seen in biofilms? To investigate, Yan, Fei, Mao et al. grew biofilms of the bacterium called Vibrio cholerae – which causes the disease cholera – on solid, non-growing ‘substrates’. This work revealed that as the biofilms grow, their expansion is constrained by the substrate, and this situation generates mechanical stresses. To release the stresses, the biofilm initially folds to form wrinkles. Later, as the biofilm expands further, small parts of it detach from the substrate to form blisters. The same forces that keep water droplets spherical (known as interfacial forces) dictate how the blisters evolve, interact, and eventually shape the expanding biofilm. Using these principles, Yan et al. could engineer the biofilm into desired shapes. Collectively, the results presented by Yan et al. connect the shape of the biofilm surface with its material properties, in particular its stiffness. Understanding this relationship could help researchers to develop new ways to remove harmful biofilms, such as those that cause disease or that damage underwater structures. The stiffness of biofilms is already known to affect how well bacteria can resist antibiotics. Future studies could look for new genes or compounds that change the material properties of a biofilm, thereby altering the biofilm surface. 
    more » « less